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A B S T R A C T

Large-scale spatial heterogeneity in fisheries production is predominantly controlled by the availability of
zooplankton and benthic organisms, which have a complex relationship with primary production. To investigate
how cross-ecosystem differences in these drivers determine fish assemblages and productivity, we constructed a
spatially explicit mechanistic model of three fish functional types: forage, large pelagic, and demersal fishes. The
model is based on allometric scaling principles, includes basic life cycle transitions, and has trophic interactions
between the fishes and with their pelagic and benthic food resources. The model was applied to the global ocean,
with plankton food web estimates and ocean conditions from a high-resolution earth system model. Further, a
simple representation of fishing was included, and led to moderate matches with total, large pelagic, and de-
mersal catches, including re-creation of observed variations in fish catch spanning two orders of magnitude. Our
results highlight several ecologically meaningful model sensitivities. First, coexistence between forage and large
pelagic fish in productive regions occurred when forage fish survival is promoted via both favorable metabolic
allometry and enhanced predator avoidance in adult forage fish. Second, the prominence of demersal fish is
highly sensitive to the efficiency of energy transfer to benthic invertebrates. Third, the latitudinal distribution of
the total catch is modulated by the temperature dependence of metabolic rates, with increased sensitivity
pushing fish biomass toward the poles. Fourth, forage fish biomass is suppressed by strong top-down controls on
temperate and subpolar shelves, where mixed assemblages of large pelagic and demersal fishes exerted high
predation rates. Last, spatial differences in the dominance of large pelagics vs. demersals is strongly related to
the ratio of pelagic zooplankton production to benthic production. We discuss the potential linkages between
model misfits and unresolved processes including movement, spawning phenology, seabird and marine mammal
predators, and socioeconomically driven fishing pressure, which are identified as priorities for future model
development. Ultimately, the model and analyses herein are intended as a baseline for a robust, mechanistic tool
to understand, quantify, and predict global fish biomass and yield, now and in a future dominated by climate
change and improved fishing technology.

1. Introduction

Fishes are an important resource economically, socially, and nu-
tritionally (FAO, 2016). For this reason, fisheries oceanographers and
managers have long sought to forecast fisheries yields, often on a spe-
cies- and regional stock-specific basis (Christensen et al., 2015). These
efforts have received mounting attention as the growing human popu-
lation increases demands on seafood and jobs (Barange et al., 2014)
while climate change is projected to alter ocean productivity (Bopp
et al., 2013; Laufkötter et al., 2015) and subsequent fisheries yields (e.g.

Cheung et al., 2010, Blanchard et al., 2012, Lefort et al., 2015). How-
ever, the connections between ocean productivity and fisheries yields is
not straightforward (Ryther, 1969, Friedland et al., 2012, Stock et al.,
2017) and the need to understand global fisheries extends beyond total
yields. Fishes come in many shapes and sizes, with differences related to
habitat, feeding preferences, and life history characteristics. These
various functional types serve different roles in their ecosystems and
have disparate socioeconomic value. They also rely on different energy
flow pathways from phytoplankton (van Denderen et al., 2018) and are
subject to varying degrees of predatory and fisheries control (Frank
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et al., 2005, Andersen and Pedersen, 2010).
Most of the commercially important fish species fall into three

functional types: small pelagic fish (termed forage fish), large pelagic
fish, and demersal fish. Forage fish live in the upper water column
where they feed on plankton (Blaxter and Hunter, 1982, Cury et al.,
2000, van der Lingen et al., 2006). They tend to have smaller maximum
sizes and serve as prey to numerous marine predators (Blaxter and
Hunter, 1982, Cury et al., 2000, Pikitch et al., 2014). Representative
species include sardines and anchovies. Large pelagic fish also live in
the upper water column, as well as greater depths, where they act as top
predators, only feeding on plankton during their larval stages (Lehodey
et al., 2008). Notable examples include tunas and billfishes. Thusly,
forage fish and large pelagics are different trophic levels in the classic
size-structured pelagic food chain that extends from phytoplankton to
zooplankton to fish. In contrast to these pelagic fishes, demersal fishes
live near the seafloor and consume benthic fauna that derive their en-
ergy from export production (Blanchard et al., 2009, Rowe and
Demming, 2011). Demersal fish are generalist predators capable of
feeding on pelagic animals in addition to benthic resources (Garrison
and Link, 2000, Bulman et al., 2001). This functional group is ex-
emplified by gadids and flatfishes, such as Atlantic cod and Greenland
halibut.

These three fish functional types have been studied extensively and
represented in numerous models from the regional to global scale with
detail that ranges from species-specific behavior and life histories to
maximum size as the only trait. Such models have been used to predict
distributions (Lehodey et al., 2008, Maury, 2010, Harfoot et al., 2014,
Watson et al., 2015), estimate potential yield (Andersen and Beyer,
2015, Carozza et al., 2017), examine the effect of different fishing
strategies (Andersen and Pedersen, 2010, Jennings and Collingridge,
2015, Galbraith et al., 2017), and project the impacts of climate change
on fish and fisheries (Cheung et al., 2010, Blanchard et al., 2012,
Barange et al., 2014, Lefort et al., 2015). There remains a need, how-
ever, to understand the dominant factors determining the global dis-
tribution and productivity of these functional types in order to predict
the changing structure of fish communities and their productive capa-
city under global change and continued exploitation.

It was our objective to elucidate the bottom-up drivers of the global
patterns of forage, large pelagic, and demersal fish production and
catches. To do so, we constructed a mechanistic model based on allo-
metric rate scaling principles that resolves trade-offs and interactions
between these three key functional types. Specifically, it simulates the
competitive and predatory trophic interactions between the fishes and
with their pelagic and benthic food resources and replicates funda-
mental aspects of fish life cycles. The model builds off of size spectrum
models (e.g. Benoit and Rochet, 2004, Andersen and Pedersen, 2010,
Blanchard et al., 2009, 2012, Hartvig et al., 2011, Jennings and
Collingridge, 2015), and uses allometric relationships to describe phy-
siological rates. It differs by distinctly representing functional groups
through variations in habitat, maximum size, and feeding preferences.
Also, in contrast to many size spectrum models, our model is spatially
explicit, and mechanistically connected to lower trophic levels without
relying on assumptions about trophic transfer efficiency. We coupled
this model to a high-resolution global earth system model that resolves
plankton trophodynamics (Stock et al., 2014, 2017) to mechanistically
explore drivers underlying the coexistence, distribution, and biomass
productivity of these critical fish functional types across ecosystems in
the contemporary ocean.

2. Methods

To aid recognizability, we have named this new model the FishErIes
Size and functional TYpe model (FEISTY). FEISTY is a size- and trait-
based model of higher trophic level dynamics. For the analysis herein,
FEISTY was forced with physical and plankton food web dynamics
provided by GFDL’s ESM2.6 high-resolution earth system model

(Delworth et al., 2012, Dunne et al., 2012, 2013, Stock et al., 2017). In
the methods below, we first briefly describe the physical and plankton
forcing, followed by a detailed description of FEISTY and its integration
with ESM2.6.

2.1. Physical and plankton food web drivers

Outputs from GFDL’s ESM2.6 high-resolution Earth System Model
were used to provide physical and plankton food web forcing for
FEISTY. ESM2.6 was constructed by integrating carbon and plankton
food web dynamics from GFDL’s Carbon, Ocean Biogeochemistry and
Lower Trophics (COBALT) ecosystem model (Stock et al., 2014) with a
high resolution physical climate simulation (Delworth et al., 2012). The
horizontal resolution is 10-km in the ocean submodel and 50-km in the
atmospheric submodel. The ocean has 50 vertical layers, with 10-m
vertical resolution over the top 200m and a minimum depth of 40m
(i.e., all locations < 40m are treated as if they are 40m deep).

COBALT uses 33 state variables to resolve global-scale cycles of
nitrogen, carbon, phosphate, silicate, iron, calcium carbonate, oxygen,
and lithogenic material (Stock et al., 2014). The representation of
planktonic food web dynamics within COBALT includes bacteria, dia-
zotrophs, small and large phytoplankton, and three zooplankton groups
that feed on phytoplankton, bacteria, and each other according to mean
predator to prey size ratios (Hansen et al., 1994). The small zoo-
plankton group represents microzooplankton that are < 200 µm in
equivalent spherical diameter (ESD). The medium zooplankton are
parameterized as small- to medium-bodied copepods (0.2–2.0mm
ESD), and the large zooplankton are parameterized as large copepods/
krill (2.0–20mm ESD). The combined pool of medium and large zoo-
plankton comprise what are commonly referred to as “mesozoo-
plankton” (Sieburth et al., 1978). The parameterization of trophic in-
teractions relies primarily on allometric and bioenergetic relationships,
and the model was calibrated to ensure quantitative consistency with
large-scale planktonic food web dynamics, including patterns in pri-
mary and zooplankton production (Stock et al., 2014). Within ESM2.6,
COBALT was furthermore able to robustly capture differences in
chlorophyll, primary production, medium and large zooplankton bio-
mass, and export fluxes across globally-distributed, mostly coastal
“large marine ecosystems” (LMEs), with the exception of inland seas
(Stock et al., 2017). The primary shortcomings of ESM2.6-COBALT are
(i) it under-predicts very high chlorophyll (> 5 mg m−3) inferred from
satellites in nearshore regions (< 25m) and (ii) the fully coupled at-
mosphere-ocean configuration is more susceptible to regional biases
and drifts in biome boundaries relative to ocean simulations forced by
atmospheric reanalysis. Chlorophyll mismatches in nearshore regions
may arise partially from satellite estimate errors linked to the complex
optical properties of these waters (Schofield et al., 2004, Dierssen,
2010), but likely also reflect ESM2.6 limitations in nearshore regions
such as the 40m minimum depth.

The fully coupled ESM2.6-COBALT was run with 1990 greenhouse
gas conditions and the relatively coarse representation of the plankton
food web (van Oostende et al., 2018) for 55 years to reach equilibrium
conditions for the upper ocean processes that exert dominant controls
on ocean productivity (Stock et al., 2017). The run was initialized with
hydrography from year 141 of a 1990 control with the CM2.6 physical
climate model and nutrients from the World Ocean Atlas (Garcia et al.,
2006), dissolved organic carbon from GLODAP (Key et al., 2004), and
other fields from a coarse-resolution COBALT simulation (Stock et al.,
2014). We use a monthly climatology formed from the last 5 years of
the coupled ESM2.6-COBALT run as an estimate of contemporary cross-
ecosystem energy flows from plankton to fish, noting that these esti-
mates were highly similar across differing 5, 10, and 20 year segments
(Stock et al., 2017). This climatology was interpolated to a daily
timescale and a coarser horizontal resolution grid of 1° latitude/long-
itude to force FEISTY. For all FEISTY simulations, the monthly clima-
tology was repeated for a total of 150 years to ensure equilibrium
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conditions were met. After reaching equilibrium, there is little inter-
annual variability due to the repeated forcing of a 5-year climatology
and the large differences between the ecosystems analyzed herein are
generally much greater than interannual differences between those
systems. Our results present the final year of this simulation, though
any year or set of years from the last 20 would produce similar results.

COBALT is linked to FEISTY in an “offline” fashion. That is, COBALT
outputs drive the fish model, but there are no feedbacks of the fish on
the plankton. All COBALT biomasses and fluxes were converted from
moles of nitrogen (molN) to grams wet weight (gWW) assuming
Redfield (1934) stoichiometry and the constant wet weight to carbon
ratio of 9:1 (Pauly and Christensen, 1995). From here on, all biomasses
will be expressed as wet weight (i.e. g signifies gWW). The specific
COBALT outputs that drive the fish model are: medium and large
zooplankton biomass integrated over the top 100m, mdz and lgz (g
m−2), the mortality rate of medium and large zooplankton, which sets
an upper bound for material consumed by fish, also integrated over the
top 100m, loss_mdz and loss_lgz (g m-2 d−1), the flux of detrital matter
to the ocean bottom, det_btm (g m-2 d−1), the mean temperature in the
upper 100m, Tp (°C), and the bottom temperature, Tb (°C). The annual
mean values of these forcings are provided in the Supplementary ma-
terial (Supp. Table S1) for reference. A detailed assessment of ESM2.6
skill at the ocean-biome and across Large Marine Ecosystem (LME) is
provided by Stock et al. (2017).

2.2. FEISTY – A global fisheries model

2.2.1. Fishes
Fishes in FEISTY are defined by their functional type, size, and

maturity stage (Fig. 1). There are three fish functional types represented
in the model: forage fish (F), large pelagic fish (P), and demersal fish
(D). Forage fish are planktivores and have a smaller maximum size
compared to the large pelagic and demersal types. Adult large pelagics
and demersals are piscivores, but prey depends on life stage and ha-
bitat. Both the forage fish and large pelagics are fully pelagic, living
their entire lives in the upper 100m represented by the model. The
demersal fish begin their lives as pelagic larvae, then transition to the
benthic habitat as juveniles. The adults are fully benthic in areas where
the water column is> 200m, while in shallower areas they may feed
both on the benthos and in the pelagic water column. Our representa-
tion of demersals is largely based on the life history strategies of gadids

and pleuronectids where early life stages are pelagic, the late juvenile
stage is the most bottom-oriented, often relying on specific benthic
habitat for shelter or food, and adults of increasing maturity inhabit
more of the water column and their feeding becomes opportunistic.

The biological rates in the model are based on allometry using the
mass, w (g), of each size class. Fish size classes are defined using
logarithmic size bins appropriate for the life history stage it represents
by holding Z, the ratio of initial and final body sizes of each size-class,
constant across all stages. The small fish size class (S) is 1–500mg
(geometric mean 20mg), which is equivalent to 4.6–36.8 mm in length
(geometric mean 13mm) and encompasses the large zooplankton size
range. The medium fish size class (M) represents fishes 0.5–250 g
(geometric mean 11.2 g, 10.4 cm) and the large fish size class (L) re-
presents 0.25–125 kg (geometric mean 5.6 kg, 0.82m). These lengths
were calculated from the weights using the length-weight relationship
of Andersen and Beyer (2015). The small size class of the forage fish
(SF) is an immature stage of both larvae and juveniles, and the medium
size class is the mature adult stage (MF). For large pelagic and demersal
fish, the small size class is representative of the larvae (SP, SD), the
medium the juveniles (MP, MD), and the large the adults (LP, LD). The
number of groups (2 for small, early maturing fish and 3 for large, late
maturing fishes) was chosen a priori. FishBase was consulted via the R
(R Core Team, 2017) package “rfishbase” (Boettiger et al., 2012) to
determine the mean lengths (“TL”) and weights (“Weight”) of fishes by
the “Order” and “DemersPelag” categories to ensure that the geometric
mean sizes represented typical forage and large pelagic fishes. While
these size bins and functional types are coarse, they allow us to capture
the basic contrasts and life cycle stages for the functional types of in-
terest herein in a numerically efficient way tractable for long, global
simulations. The structure is also intended as a framework that can be
expanded to other functional types or refined for a specific species as
needed.

The general form of the mass-conserving model is derived from the
stage-structured formulation of De Roos et al. (2008), which approx-
imates a continuously size-based formulation into a few stages. The
central assumption is that the ratio of mortality to growth rate is in-
dependent of body size within a life stage, such as is when both growth
and mortality scale with mass, e.g., as mass raised to the power 0.75
and −0.25 respectively. This assumption is inspired by a full size-
structured model where growth and mortality does indeed scale allo-
metrically at steady state (Andersen and Beyer, 2006). In FEISTY, and

Fig. 1. Model structure denoting the two zooplankton and three fish size, three functional types, three habitats, two prey categories, and feeding interactions
(arrows). Dashed arrow denotes feeding only occurs in shelf regions with depth < 200m. The dotted line surrounds zooplankton biomass that is input from an ESM.
Graphic design by Hans van Someren Gréve.
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other dynamic size-structured models (Hartvig et al., 2011), growth and
mortality will vary between life stages because they are emergent re-
sults of both metabolic factors and dynamic changes in prey and pre-
dators. In this case the formulation is not exact, but a useful numerical
approximation that has been used successfully for similar applications
(e.g. Van Leeuwen et al., 2008).

Each functional type is modeled as a collection of size-classes, with
smaller classes growing into larger size classes. The fish biomass density
in size and stage class i (Bi, g m−2) evolves with time (t, d) as:

= +dB
dt

B µ R H·( )i
i i i i nat i i i (1)

where ν (d−1) is the biomass-specific rate of energy assimilation
available for growth and reproduction (i.e., total assimilation minus
catabolic respiration), ρ (d−1) is the biomass-specific rate of energy
used for reproduction, γ (d−1) is the biomass-specific rate of energy
used for somatic growth to the next size class, and µnat (d−1) is the
biomass-specific natural mortality rate (Table 1). The biomass re-
cruiting from the size class below or, in the case of the larvae, via re-
production, is given by Ri. The biomass lost to predation by larger size

Table 1
Model parameters, forcing, and key simulated variables. Means are geometric means. Parameter values are those used in the final simulation. The “forcing”
designation indicates externally-imposed model forcing that are derived from the ESM2.6-COBALT (Section 2.1). These are the specific names output from COBALT.
Simulated quantities are those derived from the model-governing equations, given a specified set of parameters and forcing. Note that these simulated variables are in
addition to the core model state variables summarized in Fig. 1. Parameter sources are provided: AB = Andersen and Beyer, 2015; Hartvig = Hartvig et al., 2011,
Hartvig and Andersen, 2013; JC = Jennings and Collingridge, 2015; RD= Rowe and Demming, 1985, Rowe and Demming, 2011; Stock = Stock et al., 2014; Watson
= Watson et al., 2015; vanD = van Denderen et al., 2018. Those marked with an asterisk began as the baseline value from this source, but were altered through
model calibration (Appendix).

Symbol Description Value Units Source

Parameters
aC Maximum consumption intercept 0.0548 gbc−1 d−1 Hartvig*
aE Encounter intercept 0.1918 m2 gbe−1 d−1 Hartvig*
aM Metabolism intercept 0.011 gbm−1 d−1 Hartvig*
α Assimilation efficiency 0.7 – Watson
bC Maximum consumption slope –0.25 – Hartvig
bE Encounter slope –0.20 – Hartvig
bM Metabolism slope –0.175 – Hartvig*
β Transfer efficiency from detritus to benthic invertebrates 0.075 – RD*
dt Time step 1 d
ε Reproductive efficiency 0.01 – JC
f Fishing mortality rate 8.22E-04 d−1 AB
k Temperature sensitivity of most rates 0.063 °C−1 Stock
kM Metabolism temperature sensitivity 0.0855 °C−1 Stock*
κ Fraction of energy allocated to growth 1, 1, 0.5 –
LL Length of large fish size class individual 292.4–2320.8 (mean 824) mm wL, AB
LM Length of medium fish size class individual 36.8–292.4 (mean 104) mm wM, AB
LS Length of small fish size class individual 4.6–36.8 (mean 13) mm wS, AB
μnat Natural mortality rate constant 2.74E-04 d−1

T0 Metabolic rates reference temperature 10 °C Hartvig
θ Prey preference Table 2
θA Large fishes preference on medium forage fish 0.5 – calibration
θD Preference of large demersals on pelagic prey 0.75 – vanD*
θS Medium fish preference on medium zooplankton 0.25 –
wL Weight of large fish size class individual 250–125000 (mean 5600) g
wM Weight of medium fish size class individual 0.5–250 (mean 11.2) g
wS Weight of small fish size class individual 0.001–0.5 (mean 0.02) g
z Ratio of the initial to the final body size of each fish size class 0.002 – wL, wM, wS

Forcing
det_btm Flux of detrital matter to the ocean bottom Forcing g m−2 d−1 COBALT
lgz Large zooplankton biomass integrated over the top 100m Forcing g m−2 COBALT
loss_lgz Biomass of large zooplankton lost to higher predators integrated over the top 100m Forcing g m−2 d−1 COBALT
loss_mdz Biomass of medium zooplankton lost to higher predators integrated over the top 100m Forcing g m−2 d−1 COBALT
mdz Medium zooplankton biomass integrated over the top 100m Forcing g m−2 COBALT
Tb Bottom temperature Forcing °C COBALT
Tp Mean temperature in the upper 100m Forcing °C COBALT
Y prey biomass Forcing, simulated g m−2 COBALT, Eqs. (1), (2)
Simulated
A Mass-specific search rate Simulated m2 g−1 d−1 Eq. (4)
B Biomass of fish or benthic invertebrates Simulated g m−2 Eqs. (1), (2)
C Mass-specific maximum consumption rate Simulated g g−1 d−1 Eq. (6)
E Mass-specific encounter rate Simulated g g−1 d−1 Eq. (3)
γ energy for growth Simulated g g−1 d−1 Eq. (10)
H Biomass lost to fishing Simulated g m−2 d−1 Eq. (14)
I Mass-specific consumption rate Simulated g g−1 d−1 Eq. (5)
λ Fraction of time spent in the pelagic Simulated – Eq. (15)
M Biomass-specific basal metabolic rate Simulated g g−1 d−1 Eq. (9)
μtot Total mortality rate Simulated d−1 Eq. (11)
ν Total energy available for growth and reproduction Simulated g g−1 d−1 Eq. (8)
R Biomass recruiting to the next size class Simulated g m−2 d−1 Eq. (13)
ρ Energy for reproduction Simulated g g−1 d−1 Eq. (12)
T Habitat temperature Simulated °C Eq. (16)
ψ Biomass lost from predation by larger size classes Simulated g m−2 d−1 Eq. (7)

C.M. Petrik, et al. Progress in Oceanography 176 (2019) 102124

4



classes (ψ, g m−2 d−1) arises through the modeled consumption, and H
(g m−2 d−1) is the biomass lost to fishing harvest. The parameterization
of each of these terms is described in the subsections that follow.

Benthic invertebrates, which consist of a pool with no explicit size
that derives energy from the detrital flux to the sea floor, are modeled
separately from the fish functional types. The invertebrate biomass
density, BI (g m−2), over time is

=dB
dt

det_btm· ,I
I (2)

where β represents the transfer efficiency from detritus to benthic in-
vertebrates and ψI is the predation losses (g m−2 d−1) via consumption
by the demersal medium and large size classes. The parameter β reflects
both the respiration costs of the benthic invertebrates and the fraction
of the detrital flux that is buried or remineralized directly by bacteria.
The value of β was parameterized such that the global distribution of
benthic invertebrates closely resembled the megafauna estimates of Wei
et al. (2010) and the trophic level of large demersal fish was>3 in
coastal regions.

Spatially, FEISTY is comprised of a set of discretized ordinary dif-
ferential equations representing a demographic system at each spatial
grid cell, being forced offline by vertically integrated temperature,
vertically integrated zooplankton biomass concentrations and mortality
losses, and bottom temperature and detrital fluxes. To step the model
forward in time we used a simple forward-Euler scheme, integrated
with a daily time step. Without the inclusion of fish movement, the
forward-Euler scheme is stable at these temporal scales and the spatial
scales of the global model grid.

2.2.2. Consumption and predation
Predation is the consequence of consumption following encounter.

The biomass-specific encounter rate, Ei,j (d−1), between predator i and
prey type j is a temperature-dependent function of prey biomass, Yj (g
m−2), prey preference, θj, and fish weight,

=E Y A· · ,i j j j i, (3)

where Ai is the mass-specific search rate (m2 g−1 d−1):

=A k T T a wexp( ·( ))· · ,i E i
b

0 E (4)

where T0 is 10 °C (see Section 2.2.5 on temperature-dependence). Mass-
specific consumption of prey biomass, I (d−1), is calculated using a
multi-prey Type II feeding function:

=
+

I
C E

C E
·

,i j J
i i j

i j
J

i j

,

, (5)

where we use the index j for prey in the diet set J, which depends on the
predator (see below). The mass-specific maximum consumption rate, C
(d−1), is:

=C k T T a wexp( ·( ))· · ,i C i
b

0 C (6)

where k governs temperature sensitivity and bC is an allometric scaling
constant determining body-size dependence. Following this, the pre-
dation rate of a given functional type in size class i, ψi (g m−2 d−1),

=
+

I B· ,i n i i n n1 , (7)

is the sum of consumption by the predators of the next size class up
(n ∈ i + 1).

The diet set J varies amongst the groups as previously described and
shown in Fig. 1, with a full prey preference matrix given in Table 2. In
the basic model formulation, all of the linkages between fish in Fig. 1
are assumed to have equal preferences/prey availability (θ=1). We
explore the necessity of additional prey avoidance and predator spe-
cialization for coexistence of fish functional types in a series of ex-
periments (Section 2.3). To support this, we allow the medium-size fish
to consume the medium zooplankton, though two size classes removed

from them, at a lesser preference, θS. We explore the implication of
enhanced predator avoidance by adult forage fish relative to the juve-
nile stages of larger fish by reducing their availability to large pre-
dators, θA. Lastly, θD diminishes the feeding effectiveness of demersal
generalists feeding on pelagic prey relative to pelagic specialists.

FEISTY is coupled with the zooplankton fields from COBALT in a
manner that ensures fish cannot consume more energy than zoo-
plankton can provide. COBALT creates large-scale patterns in medium
and large zooplankton productivity that are consistent with observed
patterns (Stock et al., 2014). This sets an upper bound for fish con-
sumption, but zooplankton production can also be lost to natural
mortality, unresolved cannibalism within zooplankton groups, or pre-
dators not resolved by our model (e.g., gelatinous zooplankton, marine
mammals). If the consumption calculated by FEISTY is less than
available zooplankton production from COBALT, the excess energy is
presumed lost to these other pathways. If the calculated fish model
feeding rates are greater than available zooplankton production, we
reduce feeding rates proportionally so that energy is conserved.

2.2.3. Growth and reproduction
The total biomass-specific energy available for growth or re-

production (production rate) for a given size-class i is:

= I M· ,i i i (8)

where α is the food assimilation efficiency and M is biomass-specific
basal metabolic costs (d−1). Basal metabolic costs are

=M k T T a wexp( ·( ))· · ,i M M i
b

0 M (9)

where kM governs temperature sensitivity and bM dictates size-depen-
dence. Following De Roos et al. (2008), the growth to the next size class
(maturation rate) is:

=
µ

z
·

1
,i

i i toti

i
µ(1 /( · ))toti i i (10)

where μtoti is the total mortality rate of fish class i (d−1), which is the
sum of the natural mortality rate, the predation rate, and the fishing
mortality rate, all expressed as biomass-specific rates:

= + +u u
B

f ,toti nat
i

i
i (11)

and where zi is the ratio of the initial to the final body size that a
particular life stage encompasses. Thus, zi reflects the size range that an
individual has to grow through before maturing to the next size class. κi
is a unit-less parameter that controls the fraction of νi used for somatic
growth, hence 1−κi is the energy invested in the production of eggs for
each size-class i. Each functional type only has one size class with
mature individuals. In the immature size classes 100% of energy is al-
located to growth (κ =1). Since the mature size class spans a range of
sizes, we assume that it represents both adults that have reached their
maximum size and those that are still growing. For this mature group,
energy is split 50% towards reproduction and 50% towards growth

Table 2
Feeding preferences with predators in the rows (labeled with leftmost column)
and prey in the columns (labeled with top row). S: small, M: medium, L: large,
Bent: benthic invertebrates, Z: zooplankton, F: forage fish, P: large pelagic fish,
D: demersal fish. See Table 1 for θ values.

Bent MZ LZ SF SP SD MF MP MD

SF 1
SP 1
SD 1
MF θS 1 1 1 1
MP θS 1 1 1 1
MD 1
LP θΑ 1
LD 1 θΑ⋅θD θD 1
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(κ =0.5). The energy available for reproduction is:

= ·(1 ).i i i (12)

Since there is no larger size class for the adults to mature to, the
available energy, γ, determining the flux out of the size class is instead
available for reproduction. Biomass in the smallest size classes is pro-
duced from reproduction with an efficiency, ε, that accounts for egg
mortality and other processes that reduce the number of larvae from the
mass-specific fecundity of mature females (e.g. sex ratios). The biomass
recruiting to the smallest size class (i=1) or the next size class up
(i > 1) is

=
+ =

>R
B i

B i
·( )· , 1

, 1 ,i
A A A

i i 1 (13)

where the subscript A denotes an adult stage (MF, LP, or LD).

2.2.4. Non-predation mortality
Natural mortality, μnat (d−1), from sources other than piscivory (e.g.

disease, zooplankton, birds, marine mammals) is treated as a constant
equivalent to 0.1 y−1. In addition, mortality from fishing harvest is
simulated by applying a constant fishing mortality rate, f (d−1),

=H f B· .i i i (14)

2.2.5. Temperature-dependence of model rates
A broad range of temperature relationships have been reported for

marine teleost fishes, but most estimates cluster around a doubling in
biological rates for each 10 °C temperature increase (Q10). A meta-
analysis of resting metabolism by Clarke and Johnston (1999) found
within-species Q10 values that ranged from 0.45 to 3.41, with a median
of 2.40, whereas their cross-species analysis resulted in a Q10 of 1.83. As
a starting point, a Q10 of 1.88 from Eppley (1972) and the COBALT
plankton biological rates (Stock et al., 2014) was adopted. We assumed
that encounter and consumption rates followed the lower temperature-
sensitivity of anabolism (Perrin 1995), here represented with a Q10 of
1.88.

The temperature, T, used to calculate rates varies by fish functional
type and feeding behavior. For pelagic stages T= Tp and for benthic
stages T= Tb. For demersal adults in coastal areas, the temperature
depends on the estimated fraction of time spent in the pelagic, λ, and
demersal zones (1−λ). While the adult demersals do not explicitly split
their time between environments, the temperature weighting is pro-
portional to the biomass of prey (medium size fishes and benthos) in
both areas,

= +
+ + +

B B
B B B B

.MF MP

MF MP MD Bent (15)

The effective temperature for adult demersals in then calculated as

= +T T T· (1 ).p b (16)

2.3. Parameter sensitivity and conditions for the coexistence of functional
types

Our initial simulations used uniform prey availability/preference
for all the predator-prey linkages shown in Fig. 1 (θ=1) and the most
commonly employed biological rate allometric relationships (bC, bE,
bM). We use a perturbation analysis to understand the basic sensitivities
in the patterns of fish biomass distributions and to devise a pragmatic
strategy for tuning at the global scale (Appendix), leading to the
parameter values in Table 1. The sensitivity analysis perturbed para-
meters by±10% from those most commonly employed in the literature
(Table A1). Parameter sensitivity was calculated as the difference in
log10-transformed mean biomass of the perturbation, Pert, from the
base level, Base,

=S log Pert log Base( ¯ ) ( ¯ ),n n n10 10 (17)

where n denotes the response variable. The logarithmic transformation
was used to ensure similar weighting of changes across orders of
magnitude. Five different perturbation response metrics were chosen:
forage fish biomass, large pelagic fish biomass, demersal fish biomass,
low latitude biomass (latitudes < 30°N or S), and high latitude bio-
mass (> 30°N or S). The total magnitude of all response metrics (Mag)
was calculated as the square root of the sum of all five squared (i.e., the
L2 norm of the response vector). Responses of parameter changes were
clustered using the “hclust” routine in RStudio v1.0.143 (R Core Team,
2017).

Considered together, these response metrics provide a broad yet
concise perspective on how perturbations to each parameter can affect
the global distribution and prominence of each functional type, as well
as the total biomass. This perspective is central to the objective of un-
derstanding the dominant factors determining the global distribution
and productivity of these functional types. While a complete optimi-
zation across all parameters is not possible in a 3D global context, the
perturbation analysis provides a transparent means of optimizing over a
limited number of key controls to obtain reasonable agreement with
observations. The details of this calibration are discussed in Section 3.2
and further details are provided in the Appendix. We acknowledge that
there may be other pathways to similar skill, but a complete exploration
of these pathways falls outside the scope of paper.

2.4. Generalized additive model of functional type dominance

Generalized additive modeling (GAM) of fisheries landings data
(Watson, 2017) binned by ecoregion found that the fraction of large
pelagic fish out of total large pelagic and demersal fishes could best be
estimated by the ratio of pelagic resources to benthic resources (van
Denderen et al., 2018). We similarly estimated GAMs to compare the
results of FEISTY to these findings, and to isolate the dominant en-
vironmental drivers of functional type dominance. Three different re-
sponse variables were estimated: (i) the fraction of large pelagics out of
all fishes with large adults (P/(P+D)), (ii) the fraction of large pelagics
out of all pelagic-inhabiting fishes (P/(P+ F)), and (iii) the fraction of
large fishes out of all large and medium fishes ((LP+ LD)/
(LP+ LD+MP+MD+MF)). For each of these fractions, the same
four regressors were examined in isolation as drivers: log10-transformed
net primary production (NPP, mg C m−2 d−1), log10-transformed ratio
of zooplankton production lost to higher predation to detritus flux to
the seafloor (Zloss:Det), upper water column (0–100m) temperature
(PelT, °C), and the proportion of the LME that was continental shelf, as
expressed as the fraction of the area< 200m (Frac < 200m). GAM is
a nonlinear extension of multiple linear regression that represents the
dependence of a single response variable on a set of regressors, each
through a smooth function, that interact additively with the response
(Hastie and Tibshirani, 1990). Our analysis was completed with the
“betareg” package (Cribari-Neto and Zeileis, 2010) in RStudio v1.0.143
(R Core Team, 2017) using a beta distribution (suitable for proportional
data) with a probit link function and splines with a maximum of 3 knots
as the smoothing function.

2.5. Comparison with historical fish catches

The assessment of the realism of the simulated global distribution of
fish functional types in FEISTY is based, by necessity, on reconstructed
fish catch (Pauly and Zeller, 2015). With our objective of understanding
the bottom-up drivers of spatial catch patterns that often vary by orders
of magnitude, the fishing parameterization in FEISTY was kept as
simple as possible. Fishing was implemented with a constant fishing
mortality rate in space and time. Fisheries mainly targeted adult fishes
(MF, LP, and LD) under the implicit assumption that fisheries adjust
their gear to target those fishes. Juvenile fishes in the medium size class
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(MP and MD) experienced a fishing mortality of 10% of the fishing rate
to represent bycatch and reduced selection by fishing gear. We used a
fishing mortality rate that would result in approximately maximum
sustainable yield across all three functional types, 0.3 yr−1 (Andersen
and Beyer, 2015).

Fishery-independent observations and estimates of fish abundance
are very sparse. Though our analysis focuses on bottom-up effects, we
must rely on fisheries catch data for model validation because they have
the most global coverage. We use a global catch reconstruction from the
Sea Around Us (SAU) project that incorporates estimates of industrial
fisheries, small-scale fisheries, and discards (Pauly and Zeller, 2015).
We compared SAU catches to those simulated by the model at the
spatial level of large marine ecosystems (LMEs). LMEs are “relatively
large regions on the order of 200,000 km2 or greater, characterized by
distinct: (1) bathymetry, (2) hydrography, (3) productivity, and (4)
trophically dependent populations” (www.lme.noaa.gov/Portal/).
These LMEs primarily cover coastal ecosystems and inland seas (22% of
the ocean area), but account for> 95% of fish catch in the SAU re-
construction. Following the results of Stock et al. (2017), we removed
21 of the 66 LMEs that were identified as low-effort, low-catch (LELC)
outliers. These included the oligotrophic insular Pacific/Hawaiian LME,
most polar LMEs where ice and severe weather tend to restrict effort,
and Australian LMEs where conservative regulations limit catch (Flood
et al., 2014, AFMA, 2015, Mcowen et al., 2015). The remaining 45
LMEs accounted for 93.4% of the total catch in all 66 LMEs.

For each of these 45 LMEs, we compared total catch and catch by
functional type. There are 24 groups of fishes in the SAU database,
defined by size and functional type (Table 3; Palomares et al., 2015).
We mapped these onto the two sizes and three functional types that
were harvested in the model: F (MF), P (MP and LP), and D (MD and LD;
Table 3). In most instances, a SAU category was 100% representative of
a FEISTY fish type. The two exceptions were sharks, which can be either
pelagic or demersal. Similar to the weighting scheme of Friedland et al.
(2012), we split these two groups, Small to Medium Sharks (< 90 cm)
and Large Sharks (≥90 cm), evenly into 50% pelagic and 50% de-
mersal.

Catches by LME and fish group were obtained for the years
1950–2010. For each LME, we reduced the catch dataset to the years
with the top 10 annual total catches (c.f. Cheung et al., 2008, Stock

et al., 2017). These 10 years were used to calculate the mean catch of
all fishes and by type for comparing to model results. The top 10 years
are assumed to approximate maximum fish catch potential in heavily
fished LMEs, and hence likely reflect constraints from bottom-up ocean
productivity. Further, 10 years was chosen so that the time period was
short enough to exclude long time periods before industrialized fishing.
Two different metrics were used for comparing the log10-transformed
annual catches (MT km−2 y−1) by LME: the correlation coefficient (r)
and root mean square error (RMSE).

3. Results

3.1. Controls on the distribution and coexistence of fish functional types

Predator-prey and metabolic relationships based on standard weight
and temperature scaling relationships did not allow for coexistence of
forage fish and large pelagic fish, with large pelagics easily outpacing
forage fish (Fig. 2A). The parameter perturbation analysis revealed
diverse ways of modulating the relative abundance of different func-
tional types and their latitudinal distribution (Fig. 3). Since the primary
bias of model simulations with literature parameter values was too few
forage fish, Fig. 3 shows the responses associated with parameter shift
directions that result in a positive change in forage fish biomass (noting
that the opposite change is generally anticorrelated and thus not
shown). Furthermore, to focus analysis on those parameters exerting
significant controls on the fisheries patterns the model is intended to
simulate, we have limited the parameters shown in Fig. 3 to those
producing a total response magnitude (Mag) beyond the first quartile of
the distribution of total response magnitudes of all parameters. The
primary subdivisions occur between those parameters exerting large
control on the forage fish biomass (top cluster in Fig. 3 with blue and
purple lines of the dendrogram), moderate control (bottom cluster in
Fig. 3 with red and brown lines of the dendrogram), and those that do
not (middle cluster in Fig. 3 with greens lines of the dendrogram).
Within the top “large forage fish control” and bottom “moderate forage
fish control” clusters, there are smaller subdivisions by the effects on
other groups.

The top cluster suggests several options to address the extreme
scarcity of forage fish in our initial simulation. Two of the 3 parameters
producing the largest forage fish increases controlled the size-depen-
dence of biological rates (Fig. 3). Either (i) decreasing the weight sen-
sitivity of metabolism (less negative bM) such that the metabolic penalty
for being smaller was not as great; or (ii) increasing the weight sensi-
tivity of the encounter rate (more negative bE) such that the biomass-
specific encounter rate advantage of being small was greater, led to
marked increases in forage fish biomass. This sensitivity of forage
versus large pelagic dominance to metabolic scalings with size is con-
sistent with the findings of De Roos et al. (2003). However, shifting bM
within the observed range while maintaining other constraints failed to
upend the dominance of large pelagic fish in all but a few oligotrophic
systems (Fig. 2B). Forage fish only became prevalent when more ad-
vantageous metabolic scalings were combined with the parameter ex-
hibiting the greatest single impact on forage fish abundance: enhanced
predator avoidance by adult forage fish relative to juvenile large fishes
sharing the same medium size class (Fig. 3; θA). Changing θA from 1 to
0.5 produced robust coexistence in highly productive regions, with
truncated food webs dominated by forage fish in lower productivity
subtropical gyres (Fig. 2C). While the perturbation analysis suggests
that the additive effects of many perturbations across other parameters
may be able to produce similar modulations in prominence, it is notable
that this would require numerous shifts of parameters to the extreme
ends of their uncertainty ranges.

Several perturbations in the top “large forage fish control” cluster
also exhibit secondary demersal responses. In contrast, the benthic ef-
ficiency (β) exerts a relatively strong and targeted effect on demersal
biomass. Assuming a low benthic efficiency (β=0.025) produced

Table 3
The weighting of SAU functional groups in FEISTY functional types for catch
comparisons by functional type.

Functional group Description F P D

pelagicsm Small Pelagics (< 30 cm) 1 0 0
pelagicmd Medium Pelagics (30–90 cm) 0 1 0
pelagiclg Large Pelagics (≥90 cm) 0 1 0
demersalsm Small Demersals (< 30 cm) 0 0 0
demersalmd Medium Demersals (30–90 cm) 0 0 1
demersallg Large Demersals (≥90 cm) 0 0 1
bathypelagicsm Small Bathypelagics (< 30 cm) 1 0 0
bathypelagicmd Medium Bathypelagics (30–90 cm) 0 1 0
bathypelagiclg Large Bathypelagics (≥90 cm) 0 1 0
bathydemersalsm Small Bathydemersals (< 30 cm) 0 0 0
bathydemersalmd Medium Bathydemersals (30–90 cm) 0 0 1
bathydemersallg Large Bathydemersals (≥90 cm) 0 0 1
benthopelagicsm Small Benthopelagics (< 30 cm) 0 0 0
benthopelagicmd Medium Benthopelagics (30–90 cm) 0 0 1
benthopelagiclg Large Benthopelagics (≥90 cm) 0 0 1
reef-associatedsm Small reef assoc fish (< 30 cm) 0 0 0
reef-associatedmd Medium reef assoc fish (30–90 cm) 0 0 1
reef-associatedlg Large reef assoc fish (≥90 cm) 0 0 1
sharksm-md Small to medium sharks (< 90 cm) 0 0.5 0.5
sharklg Large sharks (≥90 cm) 0 0.5 0.5
raysm-md Small to medium rays (< 90 cm) 0 0 1
raylg Large rays (≥90 cm) 0 0 1
flatfishsm-md Small to medium flatfishes (< 90 cm) 0 0 1
flatfishlg Large flatfishes (≥90 cm) 0 0 1
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benthic invertebrate biomasses (Supp Fig. S1) much lower than the
empirical estimates of Wei et al. (2010) at high latitudes and generally
resulted in the dominance of large pelagic fish over demersals in most
non-polar latitudes (Fig. 4A). This imbalance, particularly in the North
Pacific, could be remedied with a moderate increase in β (e.g., Fig. 4C).
Greater increases in β could produce demersal-dominant catches in
many ecosystems (e.g., Fig. 4E) and start to approach the high latitude
benthic biomass estimates of Wei et al. (2010), but create values far
above these estimates in subtropical gyres (Supp Fig. S1).

The capacity to modulate the relative prominence of low versus
high latitude fish biomass is generally limited relative to the capacity to
modulate functional types (Fig. 3). When focusing on those parameters
producing the largest relative change between low and high latitude
systems (e.g., increase low latitude biomass and decrease high latitude
biomass), the most effective parameters are the assimilation efficiency
(α) and the intercepts of the maximum consumption and metabolism
allometric relationships (aC and aM). In all these cases, parameter per-
turbations that decrease the energy available for growth (decreasing
assimilation or maximum consumption by 10%, increasing metabolic
costs by 10%) have a disproportionately negative impact in lower la-
titudes where energetic constraints are generally tighter. This response,

however, is often secondary to others for these variables.
The next three most effective parameters at modulating the latitu-

dinal distribution of fish are the temperature dependence coefficients of
the metabolic, maximum consumption, and encounter rates, respec-
tively (kM, kC, and kE). While their effect may seem subtle in Fig. 3,
modulation of these temperature sensitivities over the full range of
uncertainty can lead to marked changes in the global fish distribution.
For example, increasing the temperature-dependence of kM to the high
end of its uncertainty leads to a marked reduction in low latitude fish
biomass (Fig. 5) because of warm water respiration increases. This ef-
fect is particularly strong in oligotrophic subtropical gyres where en-
ergy surpluses are particularly small. In contrast, the biomass in cooler,
high latitude systems is enhanced. It is also notable that, unlike α, aC,
and aM, the temperature coefficients have relatively small responses of
the functional type biomasses, thus providing a relatively efficient way
to modulate the latitudinal distribution without strongly impacting
other quantities.

3.2. Comparison against global catch patterns

We used the sensitivities described in Section 3.1 to calibrate the

Fig. 2. Distribution of log10 biomass (g m−2) of forage fish (left) and large pelagic fish (right). Coexistence in productive regions required metabolic scalings with size
that were favorable for small fish and an assumption that predator avoidance in adult forage fish exceeded that of the juvenile stages of larger fish. Simulations with
(A) bM=–0.25 and θA=1.0, (B) bM=–0.175 and θA=1.0, and (C) bM=–0.175 and θA=0.5.
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model to best match observed total catch and catch by functional type
(see Appendix). As described above in Section 3.1, there are un-
doubtedly multiple parameterizations that lead to fish functional type
and latitudinal distributions that are consistent with catch data. The
sensitivities highlighted suggest several common characteristics: (i)
favorable metabolic allometry for forage fish and an enhanced capacity
to avoid predation relative to the juvenile stages of larger fish (Fig. 2C),
(ii) a relatively high benthic transfer efficiency to favor demersals in
LMEs with high benthic fluxes (Fig. 4C), and (iii) a relatively strong
temperature dependence of metabolic costs to shift the highest catches
toward high latitudes (Fig. 5B). As discussed in Section 2, a full opti-
mization over all parameters is computationally infeasible for global
simulations. The parameter combination is thus not expected to be a
global optima, nor does it preclude other simulations producing similar
fits. Rather, it is a pragmatic, transparent tuning of dominant con-
straints on the key quantities the model is attempting to match.

On the LME scale, the resulting agreement between annual catches
in the model simulation and the Sea Around Us Project catch re-
constructions was generally moderate, with Pearson r values≥ 0.54

when comparing large pelagic fish, demersals, and all fishes combined
(Fig. 6B, C, D, Table 4). With its globally uniform fishing rate, FEISTY
tended to capture the highest forage fish catch systems, but system-
atically overestimated forage fish catches in a number of LMEs with
very low catches (Fig. 6A). There were no large outliers when com-
paring the demersal catches, but model underestimates occurred in
colder LMEs (Fig. 6C). In addition to examining catches of each func-
tional type, we also compared the fraction of the simulated catch that
was large pelagic fish rather than demersal fish. The model’s skill in
recreating variations in this fraction was statistically significant, but
ultimately limited (r= 0.33; Table 4; Supp Fig. S2).

While there are clearly discrepancies between modeled and re-
constructed catch, the model’s skill in matching observed catch levels is
generally moderate and all skill metrics should be viewed with the
knowledge that catch is an imperfect measure of species distribution
(see Sections 2.4 and 4.1) and the simulated catch arises from a very
simple fishing model. We thus continue in Section 3.3 with an analysis
of the drivers of the modeled distribution. Extensive evaluation of the
discrepancies will be provided in the Discussion (Section 4).

Fig. 3. Heatmap and clustering of± 10% individual parameter changes from the set most commonly employed in the literature (Table A1). Response values are the
percent difference in biomass, relative to the simulation with the full literature parameter set, of: Forage fish biomass (F), Large pelagic fish biomass (P), Demersal
fish biomass (D), all biomass in low latitudes (< 30°N or S, Low), all biomass at higher latitudes (> 30°N or S, High). The colorbar on the left shows the total
magnitude (Mag) of all responses. For the slope of biomass-specific allometric relationships (bM, bE, bC), which are generally negative, perturbations refer to the
magnitude of the negative slope (i.e., bM-10 results in a reduced weight sensitivity of metabolic costs, which leads to more forage fish because the metabolic penalty
for being small is not as great as the unperturbed case). Parameters with an asterisk were adjusted in the model calibration (see Appendix).
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3.3. Global distribution of fish functional types

The biomass distribution of both types of fishes inhabiting the pe-
lagic environment are similar in that they are greatest in the tropics and
temperate regions, with lows in the subtropical gyres and lowest values
in polar areas (Fig. 7A, B). The large pelagic fish differ from the forage
fish in the tropics and subtropics where they are mostly restricted to the
eastern side of ocean basins, near areas of upwelling (Fig. 7B). These
regions of upwelling, in addition to subpolar areas, are associated with
high large pelagic fish biomasses and reduced forage fish populations
(Fig. 7A, B). A latitudinal gradient in demersal fish biomass is not well
defined, instead demersal fish are more abundant in coastal areas than
the deep basins (Fig. 7C). When combined, the total fish biomass is
equally high in offshore tropical and temperate regions and coastal
areas, with intermediate levels in polar oceans, and the lowest levels in
the subtropics (Fig. 7D). Global mean fish biomass excluding that
harvested was 1.54×109 MT, of which 1.50×109 MT was in the
medium and large size classes.

The global distribution of the fraction of large pelagic fish to the
other two types broadly mimics that of the large pelagic fish on their
own. There are very few areas with equivalent abundances; usually one
type dominates. A pattern emerges when this fraction is defined on an
LME scale and compared to the production of pelagic (zooplankton)
and benthic (benthic invertebrate) resources (Fig. 8A, B). Large pelagic
fish proliferate over demersals when the ratio of zooplankton produc-
tion (available to higher predators) to benthic detritus flux is elevated

(Fig. 8A).
When used in a generalized additive model, this ratio of zoo-

plankton to detritus was able to explain 68% of the deviance in the
fractions of pelagic fish over demersals (Table 5; Supp. Table S2). The
relationship between the ratio of zooplankton to detritus for the frac-
tions of pelagic fish over forage fish (P/(P+ F)) and the fraction of
large fishes compared to medium fishes (L/(L+M), where
L= (LP+LD) and M= (MP+MD+MF)) were weaker, only ex-
plaining 26% and 24% of the deviance, respectively (Fig. 8B, C, Table 5;
Supp. Tables S3, S4). The fraction of large fishes compared to medium
fishes was strongly correlated to temperature, with lower fractions of all
large fishes in warm LMEs (Fig. 8C, Table 5, Supp Fig. S3J, Supp. Table
S4). Temperature was also associated with the fraction of large pelagic
fish compared to demersals and forage fish (Table 5; Supp. Tables S2
and S3), with extreme warm and cold environments decreasing the
fraction (Supp Fig. S3B, F). Only a small amount of the deviance of all
three fractions was explained by the proportion of the LME that was
continental shelf, as expressed as the fraction of the area < 200m
(Table 5; Supp. Tables S2–S4). The dominance by large pelagic fish
decreased as this shelf area increased, while the percentage of large
fishes compared to medium fishes increased as this area increased
(Supp Fig. S3C, G, K). In all cases, NPP was a worse predictor than the
ratio of zooplankton to detritus and worse or equivalent to temperature
(Table 5; Supp. Tables S2–S4). These relationships were driven by low
fractions of large pelagics (or high fractions of large fishes) at low NPP
values, while there was a large spread in fractions in LMEs with high

Fig. 4. The mean fraction of large pelagics out of large pelagic fish and demersals with varying benthic efficiency, β, at the LME scale.
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NPP values (Supp Fig. S3D, H, L).

3.4. Fish dynamics in major ecosystem domains

A more detailed perspective on the drivers of the prevalence of
functional types is provided through inspection of several locations
representative of more general ocean domains. Domain 1 is the Eastern
Bering Sea (Table 6) as representative of a “Shelf Sea,” an area over the
continental shelf (< 200m) that has high amounts of both pelagic and
benthic production. Shelf seas tend to be located in temperate and
subpolar environments with seasonal variability of the physical and
biological conditions. Other classic examples include the North Sea and
the Scotian Shelf. Domain 2, the Peruvian Upwelling System (Table 6),
is an example of an “Upwelling” region with high pelagic production

and little to no benthic production. These habitats occur in areas with
coastal upwelling such as the western margin of continents (e.g. off
Peru and California) and with equatorial upwelling such as in the
eastern Pacific. Domain 3 is an “Oligotrophic Gyre”, with the example
being the location of the Hawaii Ocean Timeseries (commonly referred
to as “HOT”; Table 6). Such nutrient-poor areas occur in the subtropics
where there is a permanent thermocline and shallow mixed layer depth,
resulting in low primary production yielding low pelagic and benthic
prey.

In each of these domains we compared the mean biomass of the
resources (medium and large zooplankton, benthos) and the fishes, the
consumption fluxes between groups, and the effective transfer effi-
ciencies. We defined 3 estimates of transfer efficiency. TEeffLTL: the
ratio of secondary production of the lowest consumer trophic levels
(Lower Trophic Levels (LTL); medium zooplankton, large zooplankton,
benthos) to net primary production (NPP). TEeffHTL: the ratio of highest
trophic level (Higher Trophic Levels (HTL); pelagics and demersals in
the large size class) fish production to secondary production. TEeffATL:
the ratio of HTL production to NPP, which encompasses All Trophic
Levels.

In the Shelf Sea with the Eastern Bering Sea as an example (Table 6),
the demersal abundance was greater than large pelagic abundance
(Fig. 9). This was related to the amount of benthic resources, demon-
strated with the Z:D ratio (Fig. 8A), that serve as an additional resource
that is not shared with the large pelagic fish. Strong top-down control
by large pelagic fish and demersals limited the relative prominence of
forage fish biomass in these areas compared to regions > 200m such
as the Oligotrophic Gyres and Upwelling regions (Fig. 9). Eastern
Bering Sea effective transfer efficiency from NPP to the large size class
(TEeffATL) was 3.80× 10−3, which separated into an effective transfer
efficiency of LTL as 0.14 and of HTL as 2.72×10−2 (Table 7).

The forage fish and large pelagic fish coexisted at high abundances
in the Upwelling Domain, but there were fewer forage fish than ex-
pected (Fig. 9). These regions hosted little to no demersal population.
The large pelagic abundance in this Upwelling region was greater than
the demersal abundance in the Shelf Sea. The Peruvian Upwelling ef-
fective transfer efficiencies were similar to those of the Shelf Sea lo-
cations, with TEeffATL= 2.93×10−3, TEeffLTL= 0.10,
TEeffHTL= 3.04× 10−2 (Table 7).

In the Oligotrophic Gyre domain, food webs were truncated with
little to no biomass of the highest trophic levels, large pelagic fish and
demersals (Fig. 9). Large demersals exceeded large pelagic fish because
of sparse benthic resources (Fig. 9). The effective transfer efficiencies in
the Oligotrophic Gyres were the lowest by 1–2 orders of magnitude.
HOT effective transfer efficiencies were TEeffATL= 2.27×10−5,
TEeffLTL= 0.03, and TEeffHTL= 6.71×10−4 (Table 7).

4. Discussion

4.1. Reconciling simulated and observed catches

The time-average catches simulated by FEISTY showed moderate
agreement with total, demersal, and large pelagic catches from em-
pirical reconstructions across globally distributed LMEs (Fig. 6). This
suggests that FEISTY’s description of bottom-up forcing and interac-
tions between functional types captures significant drivers and pro-
cesses structuring fish communities at global scales. However, while
peak forage fish catch was captured, the model markedly over-esti-
mated forage catch in some systems. In contrast, the agreement with
large pelagic and demersal catches were more balanced in terms of
over- and under-estimation, though some systematic biases remained.
All misfits are likely linked to a combination of limited resolution of
both fish and fisheries dynamics within FEISTY, in addition to short-
comings in the model forcing (Stock et al., 2017). The model predicts
potential catches if the entire globe is fished with one strategy, which is
clearly a simplification of a far more complex reality. Fishing patterns

Fig. 5. Distribution of all fish log10 biomass (g m−2) with different basal me-
tabolism temperature sensitivities: kM equal to (A) 0.0405 (Q10=1.50), (B)
0.0855 (Q10= 2.35), (C) 0.1305 (Q10= 3.69).
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and intensity vary greatly between systems due to cultural, manage-
ment, and technology differences (Watson et al., 2013, Kroodsma et al.,
2018) that are not covered by our simulations. Further, fisheries catch
is an imperfect test of the model performance, as it is not necessarily
proportional to biomass abundance (Branch et al., 2010), which is the
primary variable of interest modeled by FEISTY. However, due to the
limited records on biomass abundance at global scales, fisheries catches
are a reasonable substitute for measuring whether FEISTY captures
broad-scale biological patterns. The model objectives to recreate catch
patterns across globally-distributed heavily fished ocean and coastal
biomes where the catch per unit area varies by over two orders of
magnitude also lessens concerns over the simplicity of the fishing
model. While the simplicity of the fishing model undoubtedly con-
tributes to the misfit between the model and catch reconstruction, the
extremely large oceanographic contrasts maximize the “bottom-up”
signal.

The correspondence between empirical catch reconstructions and
simulated catches of forage fish was poor. While FEISTY captured peak
catches associated with large forage fisheries, it greatly overestimated

forage fish catches in a number of LMEs with very low catches despite
seemingly favorable energetics. The biggest over-estimates were re-
stricted to two regions with neighboring LMEs: The North Pacific LMEs
of the Eastern Bering Sea, Gulf of Alaska, Aleutian Islands, West Bering
Sea, and Chukchi Sea; and nine LMEs along the eastern coasts of North
and South America. Interestingly, there is large variation (± 5x) be-
tween the SAU catch reconstruction and that of Watson (2017) for
forage fish in many of these LMEs. This suggests that the original
landings data are not straightforward and that the SAU project (Pauly
and Zeller 2015) and Watson (2017) have made different choices in
their methods of estimation for these regions.

A second explanation for the misfits could be that forage fish are
present, but not targeted in those LMEs where the model over-estimates
forage catch. Compilation of effort hours associated with purse seine
vessel tracks analyzed by the Global Fishing Watch (Kroodsma et al.,
2018) demonstrates that 2012–2016 effort for schooling pelagic fish
targeted by purse seines is lower than the median in half of these over-
estimated LMEs, with the exception of the Aleutian Islands, Eastern
Bering Sea, Gulf of Alaska, California Current, Northeast U.S. Shelf,
Scotian Shelf, and Patagonian Shelf (Supp Fig. S4). The purse seine
vessels in these median or above effort LMEs may be targeting large
pelagic fish rather than forage fish, which cannot be distinguished by
this gear type. These data demonstrate where forage fish harvesting is
not occurring rather than where it definitively is. Apart from these
seven LMEs, the over-estimation of forage fish catches in FEISTY can
likely be explained by modeled fishing rates that were higher than the
suggested historic rates of the past 50 years.

Additional misfit in the simulated forage fish catch could be the
result of top-down factors. Synthesis of 72 Ecopath food web models
revealed that forage fish catch exceeded that of their predators in all
ecosystems (Pikitch et al., 2014), though this excluded non-harvested
predators such as seabirds and marine mammals. In contrast, simulated
forage fish catch does not exceed that of large pelagic fish in many
regions where both groups overlap, suggesting strong top-down control

Fig. 6. Catch comparisons between
model simulations (FEISTY) and global
catch reconstructions (SAU) for (A)
forage fish, (B) large pelagic fish, (C)
demersals, and (D) all fishes combined.
Dot color indicates mean pelagic (top
100m) temperature (°C) of the LME.
Dashed lines represent 1:1 (black), 2x
difference (blue), 5x difference (red).

Table 4
Statistical comparisons (Pearson’s r and root mean square error (RMSE)) to
catch estimates (SAU and Stock model (Section 4.2.2)) and fraction of the catch
that is large pelagic fish vs. demersal fish (SAU and vanD model (Section
4.2.3)). Bold numbers denote significance with p≤0.05.

r RMSE

SAU All Fish 0.54 0.38
SAU F 0.27 1.42
SAU P 0.62 0.81
SAU D 0.62 0.41
SAU Frac Pelagic 0.33 0.31
vanD Frac Pelagic 0.54 0.26
Stock All Fish 0.79 0.13
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of forage fish by their predators in our model. While our model exhibits
relatively few under-estimations of forage catch, we expect that simu-
lated overexploitation of the predators will reduce top-down control,
allowing for greater forage fish populations in such systems (e.g.
Andersen and Pedersen, 2010, Szuwalski et al., 2017).

While the fit to large pelagic fish catch is far better than the forage
fish catch, there are some LMEs where simulated catches differ from
those observed by a factor of 5 (Fig. 6B). Most of the under-estimated
LMEs are around northern Europe, a region where the fishing mortality
of large predatory fishes greatly exceeded 0.3 yr−1 during the
1951–2006 reconstructed SAU time period (Christensen et al., 2003).
One of the remaining lower simulated catch locations, the Indonesian
Shelf, highlights the longitudinal disparity in the simulated biomass of
large pelagic fish across the Pacific. This distribution agrees with the
results of Watson et al. (2015) who found that large fish predators were
absent from the subtropical western Pacific when fish migration and
movement were not considered. However, much of this region became
viable for large predators when they were allowed to swim in the di-
rection that increased their per capita net growth rates (Watson et al.,
2015). Thus, the large migratory abilities of this functional type appear
to be necessary for their existence in the less productive regions of the
ocean, namely the tropics and subtropics. As a next test of our model,
we aim to add behavioral movement rules, as well as advection and
diffusion, as appropriate for each functional type. This may rectify the
distribution and catches of the large pelagic fish and improve the other
functional types as well.

FEISTY large pelagic catches in the subpolar and upwelling LMEs
and the Patagonian Shelf skew higher than SAU catch estimates. This is
particularly apparent in the North Pacific, where the model predicts
higher large pelagic biomass than suggested by catch. These regions
have fewer large pelagic fish but are not devoid of large pelagic top
predators. Instead, marine birds, pinnipeds, and cetaceans serve the
same trophic role (Cury et al., 2000, Kaschner et al., 2011, Pikitch et al.,

2014). Conversely, in the subpolar areas, the model underestimates
catches of demersal fish. Again, this is most likely explained by the
simplistic model fishing rate, which was lower than historic rates of the
past 50 years in regions that experienced overexploitation of many
demersal gadids and flatfishes, such as in the North Atlantic
(Christensen et al., 2003).

Overall, a large amount of the discrepancy between modeled and
observed catches can be explained by the simplistic representation of
fishing in the model. We hypothesize that a better representation of the
actual fishing patterns in the model would bring the simulated catches
better in line with observations, while maintaining that existing model
skill merits further discussion of results relative to alternative models
(Section 4.2) and the sensitivity of the model to parameterizations of
fish ecology (Section 4.3).

4.2. Comparisons with estimates from alternative models

There have been numerous recent studies exploring drivers of fish
biomass, catch, and catch by functional type. These offer alternative
estimates of quantities arising from different models, often with more
simplified dynamics. We contrast the results and underlying mechan-
isms herein, with emphasis on the most recent studies for each quantity.

4.2.1. Biomass
Jennings and Collingridge (2015; JC15 from here on) used a size-

based macroecological model to estimate the total biomass of marine
consumers in a pristine ocean without fishing. The general global pat-
terns of their estimates of consumer biomass and our simulations of all
fish biomass are similar, with lows in the middle of subtropical gyres
and highs in upwelling regions and subpolar areas (Supp Fig. S5; their
Fig. 6). The mean biomass is higher in JC15 than the FEISTY results,
though they emphasize the large uncertainty in this value, and they
simulate a larger size range of consumers (1 g to 1000 kg) than FEISTY

Fig. 7. Simulated global log10 biomass (g m−2) of (A) forage fish, (B) large pelagic fish, (C) demersals, and (D) all fishes combined.
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(0.02 g to 5.6 kg). When comparing the modeled biomass of medium
and large fishes to that of JC15 in the 100 g to 10 kg range, the FEISTY
global biomass estimate of 1.50× 109 MT is near their median of

1.60x109 MT and falls well within the 50% uncertainty bounds. There
are, however, other dissimilarities suggesting more robust linkages to
differences in model structure. There is less spatial variability in the
JC15 distribution (their Fig. 6) and their biomass is lower in temperate
regions, higher in subpolar and polar areas, and does not extend as far
westward of coastal upwelling areas. These discrepancies result in
variations at the LME scale such that a comparison of LME rankings by
biomass is not significant despite agreement on the ocean biome scale
(Kendall τ rank correlation, p= 0.61). Even with higher mean biomass,
their estimates of production (g m−2 yr−1) and the production to bio-
mass ratio are lower than those of FEISTY (Supp Fig. S5; their Fig. 6).
One of the differences in model structures is that the JC15 model does
not include functional types that differ by traits other than maximum
size. When their biological rate parameters (encounter, maximum
consumption, and basal metabolism) were used within the FEISTY
framework, they caused the loss of the forage fish group.

It is important to note that the biomass estimates of JC15 compared
here are from a median simulation (4.9× 109 MT) with 90% un-
certainty intervals that ranged from 0.3 to 26.1×109 MT that were
primarily driven by uncertainty in trophic transfer efficiency and its
relationship with predator-prey body mass ratios. The predator-prey
body mass ratio was constrained by the simple trophodynamics of the
three size classes in FEISTY. The trophic transfer efficiency (TE) as-
sumptions are yet another difference between FEISTY and JC15. The TE
was a constant prescribed by JC15 while in FEISTY it emerged as a
function of the underlying interactions between fish functional types
and plankton food web dynamics, and hence varied in space and time.
A median of 2.82×10−3 fraction of the lowest consumer trophic level
production reached the highest trophic level in FEISTY (TEeffHTL). If we
assume this large size class was 3 trophic levels above the lowest con-
sumers, this effective transfer efficiency would reflect a mean highest
trophic level transfer efficiency of 14.1% (TE=TEeffHTL

1/3), with a
90% confidence interval of 5.6–35.0% (Supp Fig. S6). This is a wider
range than that of JC15 who used TEs 7.8–17.1% with a mean of 11.6%
in their sensitivity analysis. However, the fractions of the primary
production that reached the lowest consumers (TEeffLTL) from the
COBALT simulation, 0.05 [0.01, 0.11], were strikingly lower than those
assumed by JC15, 0.22 [0.12, 0.26], which may account for why our
median biomass is less than theirs but falls within their large confidence
intervals. More importantly, the dynamic differences in trophic effi-
ciency and consideration of pathways connecting plankton and fishes in
FEISTY likely contributed to the accentuated gradients in fish biomass
relative to forcing with NPP.

4.2.2. Total catch
The mechanistically-inspired, empirical work of Stock et al. (2017)

was better able to reconcile fisheries catch at the LME scale as a func-
tion of both zooplankton production and the flux of detritus to the se-
diment rather than as a function of just net primary production. Re-
finement of the Stock et al. (2017) empirical model was also
accomplished via similar mechanisms that improved FEISTY’s fit to
observed catch (Section 3.1). To best model SAU catches, they needed
to apply a heavy penalty on the transfer efficiency of tropical systems,
justified by higher metabolic demands and lower oxygen (Deutsch
et al., 2015), and needed to boost the transfer efficiency associated with
benthic fluxes, assuming lower foraging costs for benthic environments
(Stock et al., 2017). Similarly, FEISTY benefited from a

Fig. 8. Fraction of (A) large pelagic vs. demersal, (B) large pelagic vs. forage,
and (C) large vs. medium fishes as a function of the ratio of zooplankton pro-
duction lost to higher predation (ZLoss) to detritus flux to the seafloor (Det) by
LME. Solid lines: predicted response, dashed lines: standard error. Dot color
indicates mean pelagic (top 100m) temperature (°C) of the LME.

Table 5
Deviance explained and R2 of generalized additive models of the LME-scale
fraction of large pelagic fish vs. demersal fish (P/(P+D)), large pelagic fish vs.
forage fish (P/(P+F)), and large fishes to medium fishes (L/(L+M)) as a
function of the individual terms: the log10 transformed ratio of zooplankton
losses to higher predators to seafloor detritus flux (log10 Zl:Det), mean pelagic
temperature in the top 100m (PelT), the fraction of LME area < 200m
(Frac200), and the log10 transformed net primary production (NPP).

Model log10(Zl:Det) PelT Frac < 200 log10(NPP)

P/(P+D) Deviance
explained

0.68 0.49 0.3 0.55

R2 0.51 0.31 0.24 0.37
P/(P+F) Deviance

explained
0.26 0.35 0.09 0.22

R2 0.19 0.35 0.05 0.18
L/(L+M) Deviance

explained
0.24 0.59 0.13 0.05

R2 0.20 0.60 0.11 0.02

Table 6
Longitude, latitude, and depth of the Domain example locations.

Location Abbrev. Longitude Latitude Depth (m) Domain

Eastern Bering Sea EBS −164.5 56.5 79 Shelf sea
Peruvian Upwelling PUP −79.5 −12.5 4782 Upwelling
Hawaii Ocean Timeseries HOT −157.5 22.5 4616 Oligotrophic gyre
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parameterization that increased the temperature sensitivity of the basal
metabolic rate, which lowered large pelagic catches in the subtropics
and increased those of demersals in subpolar regions. To increase the
transfer efficiency of the benthic environment, we did not alter the
foraging abilities of demersal fish, but instead allowed the benthic in-
vertebrate production to temporally mimic the flux of detritus to the
bottom. Our estimate of transfer efficiency from detritus to benthos of
7.5% can be thought of as an average transfer efficiency of 10% (Pauly
and Christensen, 1995) applied to 75% of the detrital flux, which agrees
well with estimates of the amount of particulate organic carbon con-
sumed by benthic metazoans that range from 60 to 90% (Rowe and
Demming, 1985, 2011).

Like Stock et al. (2017), the dynamic response of transfer effi-
ciencies results in a dynamic range of catch (i.e., a factor of 100 across
heavily fished systems). Stock et al. (2017) estimated total fisheries
catch instead of separating it by functional type. Our total simulated
catches by LME had greater agreement with their model (r= 0.79) than
with the SAU catch reconstruction (Table 5). The skill is degraded re-
lative to the simple trophodynamic approach because Stock et al.
(2017) took the trophic level of the catch from observations rather than
deriving it dynamically.

Our model supports the idea proposed by Ryther (1969) that trophic
transfer efficiency varies by oceanographic province. Ryther (1969)
assumed transfer efficiencies of 10, 15, and 20% for Oceanic, Coastal,
and Upwelling provinces respectively. The transfer efficiencies pro-
duced by COBALT from NPP to secondary production at the test loca-
tions were less than their corresponding Ryther (1969) estimates, with
the exception of our Shelf Sea that was equivalent to the Coastal

province. The effective transfer efficiencies of NPP to the lowest trophic
level (TEeffLTL) and to the highest trophic level (TEeffATL) were greater
in the Shelf Sea than the Upwelling region, but the transfer from LTL to
HTL (TEeffHTL) was greater in the Upwelling region. Meta-analysis of
Ecopath models revealed that Upwelling Areas tend to have lower (LTL)
or the lowest (HTL) transfer efficiencies compared to subpolar, tem-
perate, subtropical, and tropical regions (Rosenberg et al., 2014). Es-
timates of TEeffHTL (termed “ECI”) from the SAU catch data also
showed this pattern (Maureaud et al., 2017). These studies diverge
greatly on the regional rankings of transfer efficiency. For example, the
tropics have the highest TE in Rosenberg et al. (2014) and the lowest in
Maureaud et al. (2017). On the LME scale, our TEeffHTL values compare
favorably (r= 0.53) to the ECI scores of Maureaud et al. (2017), but
skew higher with a mean of 0.0176 ± 0.011 compared to their
0.0096 ± 0.006 (Supp Fig. S7). The effective transfer efficiencies of
FEISTY also generally fall within the canonical value of 10%
(10.13%±5.81%; Pauly and Christensen, 1995) but do show large
regional differences (Supp Fig. S6).

4.2.3. Catch by functional type
The pelagic and benthic pathways from NPP to fishes (zooplankton

production and the flux of detritus to the sediment) can be used to
understand catch composition in addition to the total amount of catch.
van Denderen et al. (2018) used a food web model to predict the bio-
mass of large pelagic and demersal predators as functions of pelagic and
benthic resources, estimated from the pe-ratio (the fraction of net pri-
mary production that sinks out of the photic zone), that was highly
correlated to fisheries landings (Watson ,2017) at the scale of ecor-
egions. At the LME scale (3-4x ecoregion size), the van Denderen et al.
(2018) model fractions correlated moderately with FEISTY large pe-
lagic catch fractions (r= 0.54, Table 4), but the FEISTY correlations
with the SAU large pelagic catch fractions were low (r= 0.33, Table 4).
However, the van Denderen et al. (2018) model fractions also degrade
at the LME scale (not shown). The fair correlation between FEISTY and
the van Denderen et al. (2018) model results from the same mechanism
operating in each to determine the fraction of large pelagic fish com-
pared to demersals (Table 5, Fig. 7A). In advance of creating the food
web model, van Denderen et al. (2018) estimated the fraction of large
pelagic fish in Watson’s (2017) landings data using a generalized ad-
ditive model (GAM). The ratio of pelagic resources to benthic resources
explained the majority of the deviance in the relative biomass of large
pelagic fish versus demersals in both the van Denderen et al. (2018)
GAM and the GAM fit to the FEISTY output, with the fraction of large

Fig. 9. Mean biomasses (circles) and fluxes of
biomass (lines) through the pelagic and benthic
food webs at the three test locations in the
Pacific: Eastern Bering Sea (EBS), Peruvian
Upwelling (PUP), and Hawaii Ocean Timeseries
(HOT). Reference circle sizes correspond to the
biomasses (g m−2) and reference line widths
correspond to the fluxes (g m−2 d−1) given.
Pelagic terms are integrated over the top 100m
while the benthic terms are at the seafloor. Net
primary productivity (NPP): grey, Medium and
large zooplankton (MZ+ LZ): yellow, Forage
fish: red, Large pelagic fish: blue, Benthos:
brown, Demersals: green. Note that NPP is de-
picted as a circle for visual ease, though it is a
rate in units of g m−2 d−1.

Table 7
Modeled effective transfer efficiencies of all trophic levels from NPP to the large
fishes (ATL), from NPP to the lower trophic levels (LTL), and from LTL to the
highest trophic level (HTL) at the individual domain locations (loc; Table 6) and
averaged for the corresponding LME (LME). For comparison is the ECI of
Maureaud et al. (2017), which is equivalent to TEeffHTL.

EBS PUP HOT

TEeffATL loc 3.80E-03 2.95E-03 2.27E-05
TEeffLTL loc 0.14 0.10 0.03
TEeffHTL loc 2.72E-02 3.04E-02 6.71E-04
TEeffHTL LME 2.08E-02 2.67E-02 1.87E-03
Maureaud ECI 2.46E-02 5.40E-03 3.40E-03
LME EBS (1) Humb (13) Haw (10)
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pelagic fish increasing as the ratio of pelagic to benthic resources in-
creased.

As previously found by other studies (Friedland et al., 2012, Stock
et al., 2017, van Denderen et al., 2018), our model suggests that the
production of fish biomass is closely tied to the separation of net pri-
mary production into pelagic and benthic secondary production. The
amount of each type of secondary production determines the total
biomass of the system, while the ratio of the two influences which
functional types dominate. These relationships were exemplified in our
ocean domains. Both Shelf Seas and Upwelling areas have high primary
and secondary production, resulting in large biomasses and catches of
fishes. In contrast to the Shelf Seas, the deep Upwelling areas experi-
ence decay in the detrital flux such that very little reaches the bottom.
This difference in the ratio of secondary production led to coexistence
of forage fish and large pelagic fish at high abundances in Upwelling
areas while the demersals were scarce. On the other hand, demersal
abundance exceeded that of large pelagic fish in Shelf Seas as pre-
sumed. In contrast to our expectations, the large pelagic abundance in
Upwelling areas was not less than the demersal abundance in the Shelf
Sea. This was likely the result of the pelagic feeding penalty imposed on
demersals and that the forage fish were not stronger competitors
against the large pelagic fish. As anticipated, forage fish did dominate
the Oligotrophic Gyres, where secondary production was too low to
support the largest size classes, and their abundance was lowest in the
Shelf Seas where they were vulnerable to two types of predators. The
dominance of medium sized fishes like the forage fish was more pre-
dicated on the pelagic temperature rather than the zooplankton to
benthos ratio. Higher temperatures were more metabolically costly to
the largest size class and are indicative of regions with permanent
thermoclines and oligotrophy.

4.2.4. Summary
To summarize, FEISTY provides similar estimates to the total fish

biomass as a size-based model without functional types (Jennings and
Collingridge, 2015), represents observed trends in fisheries catches
(SAU), reflects the environmental variability in trophodynamics related
to LME scale differences in fisheries catch as explained by a less me-
chanistic model (Stock et al., 2017), and reproduces the underlying
mechanism involved in structuring large pelagic vs. demersal dominant
environments (van Denderen et al., 2018). The global patterns pro-
duced by FEISTY were fairly insensitive to the parameter exploration to
maximize correspondence with empirical catch records, indicating that
the model is robust. Overall, we believe that the skill achieved supports
the utility of FEISTY as a tool for assessing global trends in forage, large
pelagic, and demersal fish biomasses and exploring their mechanistic
basis.

4.3. Parameterizations and fish ecology

Maximizing catch correlations was robust to parameter permuta-
tions, having the basic characteristics of our model calibration (i.e.
favorable allometry and/or predator avoidance of forage fish, benthic
energy transfer efficiency sufficient for large demersal fisheries, and
temperature-dependent metabolic processes favoring elevated high la-
titude fish catch). There was, however, a somewhat delicate balance to
first achieving coexistence of all three functional types under the same
metabolic scaling principles. Using the parameterizations and asso-
ciated mass-dependent functions for encounter/clearance rate, max-
imum consumption, and basal metabolism from established size-based
models (e.g. Hartvig et al., 2011, Hartvig and Andersen, 2013, Jennings
and Collingridge, 2015) often led to the local extinction of one or two
groups. To prevent dominance of the large pelagic fish over the forage
fish, the weight sensitivity of basal metabolism needed to exceed that of
feeding rates. This results in a decreasing scope for growth with in-
creasing size. We chose bC=−0.25 and bM=−0.175, a difference of
−0.075, which is similar to the difference in one of the first fish

bioenergetics models, bC− bM=−0.07 (Kitchell et al., 1977), and the
Jennings and Collingridge (2015) model, bC− bM=−0.08. These are
exponents for weight-specific rates (g g−1 d−1) and are equivalent to
non-weight specific rate (g d−1) exponents of b*C=0.75 and
b*M=0.825, which fall within the ranges reported in the literature. von
Bertalanffy (1960) argued that acquisition rates, such as consumption,
scale with surface area (b*C=0.67), while metabolism scales as the
organism’s mass (b*M=1.0). Through a meta-analysis of fish studies,
Clarke and Johnston (1999) found that b*M had a mean value of 0.79.
Reported mean or median scaling exponents ranged from 0.65 to 0.95
in the 110 studies, while individual values spanned a greater range,
0.40–1.29 (Clarke and Johnston, 1999). Analysis of variance indicated
a statistically significant variation between different families and orders
where the differences were caused mainly by high mean values for
Myctophiformes and Salmoniformes at the level of order (Clarke and
Johnston, 1999), fishes with life history traits very similar to our forage
fish functional group. Furthermore, the mass-dependence of metabo-
lism varies with ontogeny, being highest for larval stages, intermediate
for juveniles, and lowest for adults (Fuiman and Higgs, 1997). Thus, a
better parameterization of global fish distributions may exist with mass-
dependent basal metabolic rates that vary by functional type (c.f. Killen
et al., 2016) and life history stage. However, the robustness of such
distinctions is still debated (Anderson and Beyer, 2015).

Previous studies have highlighted the critical role of temperature-
dependent metabolic costs on the latitudinal distribution of fish catch
(Libralato et al., 2008, Stock et al., 2017). FEISTY best approximated
catch reconstructions of large pelagic fish and demersal fish when basal
metabolism was more temperature sensitive than encounter and
clearance rates. The Q10 of basal metabolism was 2.35, akin to the
within-species mean of 2.40 found by Clarke and Johnston (1999),
while encounter rates had Q10= 1.88. This difference in temperature
sensitivity for resting metabolism and other rates is also adopted by the
global fish model of Cheung et al. (2010). There is ample support for
the high temperature sensitivity of metabolic rates (e.g. von
Bertalanffy, 1960). The support for the temperature scaling of en-
counter rates is less solid, but there is both theoretical and empirical
support for a smaller temperature sensitivity than metabolism. The
encounter rates are a manifestation of increased activity. Arguably, if
metabolic rates increase with temperature, so does activity. However,
activity increases similarly for the prey, making them also more adept
at avoiding predation (Rall et al., 2012). This would argue for a neutral
or a weaker temperature response of encounter rates. Empirical studies
also support a lower temperature sensitivity of consumption, with a Q10

around 1.6–1.8 (Perrin, 1995).
Achieving robust coexistence between forage fish and large pelagic

fish required giving forage fish a benefit relative to large pelagic fish. In
the absence of the demersals, our forage fish and large pelagic fish
represent an intraguild predation system where two species are engaged
in both a predator-prey relationship (LP-MF, MP-SF) and a competitive
relationship (MP-MF, SP-SF) (Polis et al., 1989, Diehl and Feißel, 2000,
Rosenheim, 2007). Models of such systems predict extinction of the top
predator (large pelagic fish) at low productivities (e.g. oligotrophic
gyres) because of lack of food availability, while at high productivities
(e.g. upwelling regions) the intermediate consumer (forage fish) is ex-
cluded by high predation by the top predator that can sustain itself
solely on their shared resource (Holt and Polis, 1997, Mylius et al.,
2001, Hartvig and Andersen, 2013). Coexistence occurs at intermediate
productivities in this case. To ensure more robust coexistence we add
the effect that adults of the smaller species are superior to juveniles of
the same size but from a larger species. Specifically, we represented a
predator avoidance advantage by the adult forage fish of the same size
class as the juvenile large pelagics. Such an advantage may reflect
schooling as a predator avoidance strategy (Blaxter and Hunter, 1982,
Magurran, 1990) or it could be the consequence of ontogenetic changes
in sensory organs and propulsive muscle tissue (Fuiman and Higgs,
1997). The role of this difference in predation rate for coexistence is
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illustrated by theoretical models of intraguild predation where coex-
istence at higher productivities becomes possible with a decrease in the
attack rate of the top predator on the intermediate consumer (van de
Wolfshaar et al., 2006). These results are borne out in FEISTY, where
only the predator avoidance effects of forage fish facilitated coexistence
of forage fish and large pelagics (Fig. 2B). Our parameterization re-
quired that adult forage fish was a factor of two less vulnerable to
predation than juvenile large pelagic fish.

Despite the addition of predator avoidance, forage fish still struggle
against large pelagics. A good example is eastern boundary currents
where the biomass of large pelagics is larger than forage fish. An ad-
ditional and ecologically plausible effect would be to also make adult
forage fish competitively superior in feeding than juvenile large pela-
gics (Werner, 1977). We found, however, that the predator avoidance
effect produced a much larger response than reducing the feeding
ability of the juvenile large pelagic fish (see Appendix). A deeper
knowledge of the specific mechanisms leading to coexistence of small
and large pelagic species in intraguild predation systems would make it
possible to increase the realism of FEISTY.

We believe that some of these issues could be mitigated by including
more of the defining characteristics of these two functional groups,
namely swimming abilities (discussed in Section 4.1), spawning pre-
ferences, and additional prey resources. In our static version of the
model, the large pelagic fish dominate in highly productive non-shelf
systems such as areas of upwelling. Though large pelagics like tunas
and billfishes are found in these regions, catches are lower than those in
non-upwelling regions of the tropics (Le Manach et al., 2015). The
temperature and eddy kinetic energy ranges of western boundary cur-
rents make them ideal spawning areas for tunas and billfishes, while
many upwelling regions are inhabitable for their larvae (Schaefer,
2001, Boyce et al., 2008, Reglero et al., 2014). Furthermore, many
forage fish graze directly on phytoplankton and microzooplankton (van
der Lingen et al., 2006). These additional food sources may give forage
fish the required edge over juvenile large pelagic fish, making the dif-
ference in predator vulnerability unnecessary. Additionally, many large
pelagic fish shift to deeper feeding with ontogeny such that their diets
include mesopelagic and bathypelagic prey (Lehodey et al., 2008).
FEISTY only represents the top 100m of the pelagic environment. Ad-
dition of a mesopelagic habitat, with mesopelagic zooplankton and a
new mesopelagic fish functional type, may allow for niche separation
that could further foster coexistence.

Exclusion of the demersal fish by the large pelagic fish was not as
problematic compared to the forage fish. Demersal fish catches were
sensitive to the parameterization of the benthic invertebrate resource
pool. At first this pool was simulated with a carrying capacity. This
formulation suffered because when the biomass approached the car-
rying capacity, none of the growth reflected in bottom detritus flux was
realized. Instead it was dissipated and essentially lost from the energy
budget, thereby inhibiting demersal production. The carrying capacity
was removed and the benthic efficiency kept low to best approximate
the distribution of benthic resources. In the future, it would be best to
develop a similar size- and trait-based mechanistic model of the benthos
to couple with the fish model (e.g. Blanchard et al., 2009).

4.4. Conclusions

We have created a dynamic and mechanistic global model of com-
mercially important fishes that can be run coupled to global earth
system models. It represents (i) basic life cycle dynamics, (ii) compe-
titive and predatory interactions, and (iii) differences in life history,
habitat, maximum size, and feeding preferences. As a result, it captures
the main drivers and processes that structure marine communities at
high trophic levels. Additionally, it is temporally dynamic making it
capable of capturing trends forced by climate change, as well as non-
linear tipping points and regime shifts. The model provides an im-
proved global-scale understanding, quantification, and prediction of the

ocean’s capacity for fish biomass and yield. In this paper, we examined
the bottom-up mechanisms of fish biomass and yield and found that not
just the total system productivity, but the type of productivity (zoo-
plankton vs. benthos) determines broad-scale spatial patterns in abun-
dance and dominance of the commercially harvested fish. Though our
model is simple in terms of only modeling three functional types of
fishes, we think that it has great potential as a tool for global ecosystem
studies and to project the effects of climate change on fishes and fish-
eries.
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